To the content
4 . 2023

New approaches to nutritional management of pregnancy: focus on choline

Abstract

Choline is an underutilized and grossly underestimated micronutrient for nutritional support of pregnancy. For the majority of pregnant women, choline synthesized in the body is catastrophically insufficient to provide the mother-placenta-fetus system. The paper presents the results of a systematic computer analysis of 4925 publications on the pharmacology of choline in pregnant women, carried out by methods of topological and metric data analysis. The molecular mechanisms of action of choline, the participation of choline in maintaining the function of placental vessels, the role of choline in the prevention of congenital malformations of the fetal nervous system are described. The long-term consequences of choline deficiency during pregnancy, the prospects for choline compensation for excess consumption of fats or alcohol during pregnancy are considered. Choline, omega-3 PUFAs (primarily docosahexaenoic acid), lutein, folate, and other micronutrients are essential for neural tube closure in early pregnancy. Adequate intake of choline and its synergistic micronutrients during the II and III trimester contributes to the normal development of memory and cognitive abilities in the child. In general, regular supplementation of choline and its synergists during pregnancy contributes to a significant improvement in the health of both mother and child.

Keywords:choline; group B vitamins; micronutrient support of pregnancy; Femibion Natalker; long-term effects of micronutrients; neuromorphogenesis

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Gromova O.A., Torshin I.Yu., Tetruashvili N.K. New approaches to nutritional management of pregnancy: focus on choline. Akusherstvo i ginekologiya: novosti, mneniya, obuchenie [Obstetrics and Gynecology: News, Opinions, Training]. 2023; 11 (4): 60–75. DOI: https://doi.org/10.33029/2303-9698-2023-11-4-60-75 (in Russian)

REFERENCES

  1. Torshin I.Yu., Gromova O.A. 25 moments of molecular pharmacology. On the development of clinical and pharmacological thinking. Ivanovo, A-Grif, 2012: 684 p. (in Russian)
  2. Wallace T.C., Blusztajn J.K., Caudill M.A., Klatt K.C., Natker E., Zeisel S.H., et al. Choline: the underconsumed and underappreciated essential nutrient. Nutr Today. 2018; 53 (6): 240–53. DOI: https://doi.org/10.1097/NT.0000000000000302 Epub 2018 Nov 13. PMID: 30853718.
  3. Ozarda Ilcol Y., Uncu G., Ulus IH. Free and phospholipid-bound choline concentrations in serum during pregnancy, after delivery and in newborns. Arch Physiol Biochem. 2002; 110 (5): 393–9. DOI: https://doi.org/10.1076/apab.110.5.393.11832 PMID: 12530624.
  4. Zeisel S.H., Niculescu M.D. Perinatal choline influences brain structure and function. Nutr Rev. 2006; 64 (4): 197–203. DOI: https://doi.org/10.1111/j.1753-4887.2006.tb00202.x PMID: 16673755.
  5. Shaw G.M., Carmichael S.L., Yang W., Selvin S., Schaffer D.M. Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am J Epidemiol. 2004; 160 (2): 102–9. DOI: https://doi.org/10.1093/aje/kwh187 PMID: 15234930.
  6. Meck W.H., Williams C.L. Choline supplementation during prenatal development reduces proactive interference in spatial memory. Brain Res Dev Brain Res. 1999; 118 (1–2): 51–9. DOI: https://doi.org/10.1016/s0165-3806(99)00105-4 PMID: 10611503.
  7. Dave N., Judd J.M., Decker A., Winslow W., Sarette P., Villarreal Espinosa O., et al. Dietary choline intake is necessary to prevent systems-wide organ pathology and reduce Alzheimer’s disease hallmarks. Aging Cell. 2023; 22 (2): e13775. DOI: https://doi.org/10.1111/acel.13775 PMID: 36642814.
  8. Obeid R., Holzgreve W., Pietrzik K. [Folate, choline, and vitamin B12 supplementation for pre-conceptional and pregnant women]. Ther Umsch. 2022; 79 (10): 541–8. DOI: https://doi.org/10.1024/0040-5930/a001398 PMID: 36415939.
  9. Gromova O.A., Torshin I.Yu., Grishina T.R., Demidov V.I., Bogacheva T.E. Molecular and clinical aspects of the action of cytidine diphosphocholine on cognitive functions. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova [Journal of Neurology and Psychiatry named after S.S. Korsakov]. 2021; 121 (5): 81–90. DOI: https://doi.org/10.17116/jnevro202112105181 (in Russian)
  10. Torshin I.Yu., Gromova O.A., Chuchalin A.G., Zhuravlev Yu.I. Chemoreactome screening of the effects of pharmacological drugs on SARS-CoV-2 and human viromes as an information basis for making decisions on the pharmacotherapy of COVID-19. Farmakoekonomika. Sovremennaya farmakoekonomika i farmakoepidemiologiya [Pharmacoeconomics. Modern Pharmacoeconomics and Pharmacoepidemiology]. 2021; 14 (2): 191–211. DOI: https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.078 (in Russian)
  11. Torshin I.Yu., Gromova O.A., Stakhovskaya L.V., Vanchakova N.P., Galustyan A.N., Kobalava Zh.D., et al. Analysis of 19.9 million publications of the PubMed/MEDLINE database using artificial intelligence methods: approaches to summarizing the accumulated data and the «fake news» phenomenon. Farmakoekonomika. Sovremennaya farmakoekonomika i farmakoepidemiologiya [Pharmacoeconomics. Modern Pharmacoeconomics and Pharmacoepidemiology]. 2020; 13 (2): 146–63. DOI: https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.021 (in Russian)
  12. Craciunescu C.N., Johnson A.R., Zeisel S.H. Dietary choline reverses some, but not all, effects of folate deficiency on neurogenesis and apoptosis in fetal mouse brain. J Nutr. 2010; 140 (6): 1162–6. DOI: https://doi.org/10.3945/jn.110.122044 Epub 2010 Apr 14. PMID: 20392884; PMCID: PMC2869500.
  13. Christensen K.E., Malysheva O.V., Carlin S., Matias F., MacFarlane A.J., Jacobs R.L., et al. Mild choline deficiency and MTHFD1 synthetase deficiency interact to increase incidence of developmental delays and defects in mice. Nutrients. 2021; 14 (1): 127. DOI: https://doi.org/10.3390/nu14010127 PMID: 35011003.
  14. Gromova O.A., Rudakov K.V., Torshin I.Yu. Systematic analysis of the effects of choline on the nervous system based on biochemical pathways. Analysis of independent literature on molecular pharmacology and clinical research. Trudniy patsient [Difficult Patient]. 2009; 7 (4–5): 13–8. (in Russian)
  15. Chmurzynska A., Seremak-Mrozikiewicz A., Malinowska A.M., Różycka A., Radziejewska A., KurzawiŃska G., et al. Associations between folate and choline intake, homocysteine metabolism, and genetic polymorphism of MTHFR, BHMT and PEMT in healthy pregnant Polish women. Nutr Diet. 2020; 77 (3): 368–72. DOI: https://doi.org/10.1111/1747-0080.12549 Epub 2019 May 1. PMID: 31044529.
  16. Torshin I.Yu., Gromova O.A., Mayorova L.A. Chemoreactome analysis of cytidyl diphosphocholine indicates synergistic combinations of neuroprotective agents. Nevrologiya, neyropsikhiatriya, psikhosomatika [Neurology, Neuropsychiatry, Psychosomatics]. 2021; 13 (2): 144–56. DOI: https://doi.org/10.14412/2074-2711-2021-2-144-156 (in Russian)
  17. Torshin I.Yu., Gromova O.A., Stakhovskaya L.V., Semenov V.A., Shchukin I.A. Chemotranscriptome analysis indicates the neurotrophic and neuromodulator effects of a citicoline molecule. Nevrologiya, neyropsikhiatriya, psikhosomatika [Neurology, Neuropsychiatry, Psychosomatics]. 2020; 12 (4): 91–9. DOI: https://doi.org/10.14412/2074-2711-2020-4-91-99 (in Russian)
  18. Guan X., Chen X., Dai L., Ma J., Zhang Q., Qu S., et al. Low maternal dietary intake of choline regulates toll-like receptor 4 expression via histone H3K27me3 in fetal mouse neural progenitor cells. Mol Nutr Food Res. 2021; 65 (2): e2000769. DOI: https://doi.org/10.1002/mnfr.202000769 Epub 2020 Dec 13. PMID: 33274576.
  19. Korsmo H.W., Jiang X., Caudill M.A. Choline: exploring the growing science on its benefits for moms and babies. Nutrients. 2019; 11 (8): 1823. DOI: https://doi.org/10.3390/nu11081823 PMID: 31394787.
  20. Jiang X., Yan J., West A.A., Perry C.A., Malysheva O.V., Devapatla S., et al. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J. 2012; 26 (8): 3563–74. DOI: https://doi.org/10.1096/fj.12-207894 Epub 2012 May 1. PMID: 22549509.
  21. Jiang X., Jones S., Andrew B.Y., Ganti A., Malysheva O.V., Giallourou N., et al. Choline inadequacy impairs trophoblast function and vascularization in cultured human placental trophoblasts. J Cell Physiol. 2014; 229 (8): 1016–27. DOI: https://doi.org/10.1002/jcp.24526 PMID: 24647919.
  22. Engelhart K., Pfitzner I., Obeid R. An exploratory study on the effect of choline and folate deficiency on levels of vascularization proteins and transcription factors in first trimester trophoblast HTR-8/SVneo cells. J Obstet Gynaecol Res. 2023; 49 (4): 1114–20. DOI: https://doi.org/10.1111/jog.15555 Epub 2023 Jan 15. PMID: 36642422.
  23. Hoffman M.C., Hunter S.J., D’Alessandro A., Christians U., Law A.J., Freedman R. Maternal plasma choline during gestation and small for gestational age infants. Am J Perinatol. 2022 Dec 30. DOI: https://doi.org/10.1055/s-0042-1759775 PMID: 36584689.
  24. Zhang L.C., Jin X., Huang Z., Yan Z.N., Li P.B., Duan R.F., et al. Protective effects of choline against hypoxia-induced injuries of vessels and endothelial cells. Exp Ther Med. 2017; 13 (5): 2316–24. DOI: https://doi.org/10.3892/etm.2017.4276 PMID: 28565844.
  25. Kwan S.T.C., King J.H., Yan J., Jiang X., Wei E., Fomin V.G., et al. Maternal choline supplementation during murine pregnancy modulates placental markers of inflammation, apoptosis and vascularization in a fetal sex-dependent manner. Placenta. 2017; 53: 57–65. DOI: https://doi.org/10.1016/j.placenta.2017.03.019 Epub 2017 Mar 30. PMID: 28487022; PMCID: PMC8140820.
  26. Molloy A.M., Mills J.L., Cox C., Daly S.F., Conley M., et al. Choline and homocysteine interrelations in umbilical cord and maternal plasma at delivery. Am J Clin Nutr. 2005; 82 (4): 836–42. DOI: https://doi.org/10.1093/ajcn/82.4.836 PMID: 16210714.
  27. Nyaradi A., Li J., Hickling S., Foster J., Oddy W.H. The role of nutrition in children‘s neurocognitive development, from pregnancy through childhood. Front Hum Neurosci. 2013; 7: 97. DOI: https://doi.org/10.3389/fnhum.2013.00097 PMID: 23532379; PMCID: PMC3607807.
  28. Zeisel S.H. Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr. 2006; 26: 229–50. DOI: https://doi.org/10.1146/annurev.nutr.26.061505.111156 PMID: 16848706; PMCID: PMC2441939.
  29. Shivapurkar N., Poirier L.A. Tissue levels of S-adenosylmethionine and S-adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks. Carcinogenesis. 1983; 4: 1051–7. PMID: 6872150.
  30. Niculescu M.D., Yamamuro Y., Zeisel S.H. Choline availability modulates human neuroblastoma cell proliferation and alters the methylation of the promoter region of the cyclin-dependent kinase inhibitor 3 gene. J Neurochem. 2004; 89: 1252–9. PMID: 15147518.
  31. Blusztajn J.K., Slack B.E., Mellott T.J. Neuroprotective actions of dietary choline. Nutrients. 2017; 9 (8): 815. DOI: https://doi.org/10.3390/nu9080815 PMID: 28788094; PMCID: PMC5579609.
  32. Johansson J., Formaggio E., Fumagalli G., Chiamulera C. Choline up-regulates BDNF and down-regulates TrkB neurotrophin receptor in rat cortical cell culture. Neuroreport. 2009; 20 (9): 828–32. DOI: https://doi.org/10.1097/WNR.0b013e32832b7324 PMID: 19424097.
  33. Madziar B., Shah S., Brock M., Burke R., Lopez-Coviella I., Nickel A.C., et al. Nerve growth factor regulates the expression of the cholinergic locus and the high-affinity choline transporter via the Akt/PKB signaling pathway. J Neurochem. 2008; 107 (5): 1284–93. DOI: https://doi.org/10.1111/j.1471-4159.2008.05681.x Epub 2008 Sep 13. PMID: 18793330.
  34. Wang R., Sun D.G., Song G., Guan C.Y., Cui Y., Ma X., et al. Choline, not folate, can attenuate the teratogenic effects ofdibutyl phthalate (DBP) during early chick embryo development. Environ Sci Pollut Res Int. 2019; 26 (29): 29 763–79. DOI: https://doi.org/10.1007/s11356-019-06087-w Epub 2019 Aug 12. PMID: 31407264.

35. Shaw G.M., Finnell R.H., Blom H.J., Carmichael S.L., Vollset S.E., Yang W., et al. Choline and risk of neural tube defects in a folate-fortified population. Epidemiology. 2009; 20 (5): 714–9. DOI: https://doi.org/10.1097/EDE.0b013e3181ac9fe7 PMID: 19593156.

36. Carmichael S.L., Witte J.S., Shaw G.M. Nutrient pathways and neural tube defects: a semi-Bayesian hierarchical analysis. Epidemiology. 2009; 20 (1): 67–73. DOI: https://doi.org/10.1097/EDE.0b013e31818f6375 PMID: 19234400.

37. Borges A.A., El-Batah P.N., Yamashita L.F., Santana Ados S., Lopes A.C., Freymuller-Haapalainen E., et al. Neuroprotective effect of oral choline administration after global brain ischemia in rats. Nutr Neurosci. 2015; 18 (6): 265–74. DOI: https://doi.org/10.1179/1476830514Y.0000000125 Epub 2014 Apr 22. PMID: 24754536.

38. Alashmali S., Walchuk C., Cadonic C., Albensi B.C., Aliani M., Suh M. The effect of choline availability from gestation to early development on brain and retina functions and phospholipid composition in a male mouse model. Nutr Neurosci. 2022; 25 (8): 1594–608. DOI: https://doi.org/10.1080/1028415X.2021.1885229 Epub 2021 Feb 28. PMID: 33641632.

39. Craciunescu C.N., Albright C.D., Mar M.H., Song J., Zeisel S.H. Choline availability during embryonic development alters progenitor cell mitosis in developing mouse hippocampus. J Nutr. 2003; 133 (11): 3614–8. DOI: https://doi.org/10.1093/jn/133.11.3614 PMID: 14608083.

40. Craciunescu C.N., Albright C.D., Mar M.H., Song J., Zeisel S.H. Choline availability during embryonic development alters progenitor cell mitosis in developing mouse hippocampus. J Nutr. 2003; 133 (11): 3614–8. DOI: https://doi.org/10.1093/jn/133.11.3614 PMID: 14608083; PMCID: PMC1592525.

41. Albright C.D., Friedrich C.B., Brown E.C., Mar M.H., Zeisel S.H. Maternal dietary choline availability alters mitosis, apoptosis and the localization of TOAD-64 protein in the developing fetal rat septum. Brain Res Dev Brain Res. 1999; 115 (2): 123–9. DOI: https://doi.org/10.1016/s0165-3806(99)00057-7 PMID: 10407130.

42. Glenn M.J., Gibson E.M., Kirby E.D., Mellott T.J., Blusztajn J.K., Williams C.L. Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experiences in adult female rats. Eur J Neurosci. 2007; 25 (8): 2473–82. DOI: https://doi.org/10.1111/j.1460-9568.2007.05505.x PMID: 17445242; PMCID: PMC2435208.

43. Zeisel S.H. Nutritional importance of choline for brain development. J Am Coll Nutr. 2004; 23 (6 suppl): 621S–6S. DOI: https://doi.org/10.1080/07315724.2004.10719433 PMID: 15640516.

44. Caudill M.A., Strupp B.J., Muscalu L., Nevins J.E.H., Canfield R.L. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study. FASEB J. 2018; 32 (4): 2172–80. DOI: https://doi.org/10.1096/fj.201700692RR Epub 2018 Jan 5. PMID: 29217669; PMCID: PMC6988845.

45. Nevins J.E.H., Beckman K.A., Bahnfleth C.L., Drewes B.M., Caudill M.A., Strupp B.J., et al. Maternal choline supplementation during pregnancy improves executive functioning in children at age 7 y. In: Presented at: American Society for Nutrition Annual Meeting. Boston, MA, June 9–12, 2018.

46. Boeke C.E., Gillman M.W., Hughes M.D., Rifas-Shiman S.L., Villamor E., Oken E. Choline intake during pregnancy and child cognition at age 7 years. Am J Epidemiol. 2013; 177 (12): 1338–47. DOI: https://doi.org/10.1093/aje/kws395 Epub 2013 Feb 20. PMID: 23425631; PMCID: PMC3676149.

47. Horstmann M., Neumaier-Probst E., Lukacs Z., Steinfeld R., Ullrich K., Kohlschütter A. Infantile cobalamin deficiency with cerebral lactate accumulation and sustained choline depletion. Neuropediatrics. 2003; 34 (5): 261–4. DOI: https://doi.org/10.1055/s-2003-43256 PMID: 14598232.

48. Gromova O.A., Torshin I.Yu. Docosahexaenoic and eicosapentaenoic acid deficiency during pregnancy: association with congenital visual impairment in children. Voprosy ginekologii, akusherstva i perinatologii [Problems of Gynecology, Obstetrics and Perinatology]. 2021; 21 (5): 96–104. DOI: https://doi.org/10.20953/1726-1678-2022-5-96-104 (in Russian)

49. Gromova O.A., Torshin I.Yu., Kosheleva N.G. Molecular synergists of iodine: new approaches to effective prevention and treatment of iodine-deficiency diseases in pregnant women. breast cancer. RMZH. Mat’ i ditya [RMJ. Mother and Child]. 2011; 19 (1): 51–8. (in Russian)

50. Gromova O.A., Kalacheva A.G., Torshin I.Yu., Grishina T.R., Semenov V.A. Diagnosis of magnesium deficiency. Magnesium concentrations in biosubstrates are normal and in various pathologies. Kardiologiya [Cardiology]. 2014; 54 (10): 63–71. (in Russian)

51. Trujillo-Gonzalez I., Friday W.B., Munson C.A., Bachleda A., Weiss E.R., Alam N.M., et al. Low availability of choline in utero disrupts development and function of the retina. FASEB J. 2019; 33 (8): 9194–209. DOI: https://doi.org/10.1096/fj.201900444R Epub 2019 May 15. PMID: 31091977.

52. Mares J. Lutein and zeaxanthin isomers in eye health and disease. Annu Rev Nutr. 2016; 36: 571–602. DOI: https://doi.org/10.1146/annurev-nutr-071715-051110 PMID: 27431371; PMCID: PMC5611842.

53. Irvine N., England-Mason G., Field C.J., Dewey D., Aghajafari F. Prenatal folate and choline levels and brain and cognitive development in children: a critical narrative review. Nutrients. 2022; 14 (2): 364. DOI: https://doi.org/10.3390/nu14020364 PMID: 35057545.

54. Jennings L., Basiri R. Amino acids, B vitamins, and choline may independently and collaboratively influence the incidence and core symptoms of autism spectrum disorder. Nutrients. 2022; 14 (14): 2896. DOI: https://doi.org/10.3390/nu14142896 PMID: 35889852.

55. Gitik M., Holliday E.D., Leung M., Yuan Q., Logue S.F., Tikkanen R., et al. Choline ameliorates adult learning deficits and reverses epigenetic modification of chromatin remodeling factors related to adolescent nicotine exposure. Neurobiol Learn Mem. 2018; 155: 239–48. DOI: https://doi.org/10.1016/j.nlm.2018.08.009 Epub 2018 Aug 9. PMID: 30099202.

56. Wu B.T., Dyer R.A., King D.J., Richardson K.J., Innis S.M. Early second trimester maternal plasma choline and betaine are related to measures of early cognitive development in term infants. PLoS One. 2012; 7 (8): e43448. DOI: https://doi.org/10.1371/journal.pone.0043448 PMID: 22916264.

57. Cole L.K., Vance J.E., Vance D.E. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta. 2012; 1821 (5): 754–61. DOI: https://doi.org/10.1016/j.bbalip.2011.09.009 Epub 2011 Sep 25. PMID: 21979151.

58. Zhao L., Cai H., Wu Y., Tian C., Wen Z., Yang P. Severe choline deficiency induces alternative splicing aberrance in optimized duck primary hepatocyte cultures. Anim Biosci. 2022; 35 (11): 1787–99. DOI: https://doi.org/10.5713/ab.22.0051 Epub 2022 May 2. PMID: 35507845.

59. Zeisel S.H., Da Costa K.A., Franklin P.D., Alexander E.A., Lamont J.T., Sheard N.F., et al. Choline, an essential nutrient for humans. FASEB J. 1991; 5 (7): 2093–8. PMID: 2010061.

60. Hammoud R., Pannia E., Kubant R., Wasek B., Bottiglieri T., Malysheva O.V., et al. Choline and folic acid in diets consumed during pregnancy interact to program food intake and metabolic regulation of male Wistar rat offspring. J Nutr. 2021; 151 (4): 857–65. DOI: https://doi.org/10.1093/jn/nxaa419 PMID: 33561219.

61. Korsmo H.W., Edwards K., Dave B., Jack-Roberts C., Yu H., Saxena A., et al. Prenatal choline supplementation during high-fat feeding improves long-term blood glucose control in male mouse offspring. Nutrients. 2020; 12 (1): 144. DOI: https://doi.org/10.3390/nu12010144 PMID: 31947955.

62. Nam J., Greenwald E., Jack-Roberts C., Ajeeb T.T., Malysheva O.V., Caudill M.A., et al. Choline prevents fetal overgrowth and normalizes placental fatty acid and glucose metabolism in a mouse model of maternal obesity. J Nutr Biochem. 2017; 49: 80–8. DOI: https://doi.org/10.1016/j.jnutbio.2017.08.004 Epub 2017 Aug 12. PMID: 28915389.

63. Gromova O.A., Torshin I.Yu., Egorova E.Yu. Omega-3 polyunsaturated fatty acids and cognitive development in children. Voprosy sovremennoy pediatrii [Problems of Modern Pediatrics]. 2011; 10 (1): 66–72. (in Russian)

64. Hammoud R., Pannia E., Kubant R., Metherel A., Simonian R., Pausova Z., et al. High choline intake during pregnancy reduces characteristics of the metabolic syndrome in male Wistar rat offspring fed a high fat but not a normal fat post-weaning diet. Nutrients. 2021; 13 (5): 1438. DOI: https://doi.org/10.3390/nu13051438 PMID: 33923230.

65. Klatt K.C., McDougall M.Q., Malysheva O.V., Taesuwan S., Loinard-González A.A.P., Nevins J.E.H., et al. Prenatal choline supplementation improves biomarkers of maternal docosahexaenoic acid (DHA) status among pregnant participants consuming supplemental DHA: a randomized controlled trial. Am J Clin Nutr. 2022; 116 (3): 820–32. DOI: https://doi.org/10.1093/ajcn/nqac147 PMID: 35575618.

66. Korsmo H.W., Kadam I., Reaz A., Bretter R., Saxena A., Johnson C.H., et al. Prenatal choline supplement in a maternal obesity model modulates offspring hepatic lipidomes. Nutrients. 2023; 15 (4): 965. DOI: https://doi.org/10.3390/nu15040965 PMID: 36839327.

67. Jack-Roberts C., Joselit Y., Nanobashvili K., Bretter R., Malysheva O.V., Caudill M.A., et al. Choline supplementation normalizes fetal adiposity and reduces lipogenic gene expression in a mouse model of maternal obesity. Nutrients. 2017; 9 (8): 899. DOI: https://doi.org/10.3390/nu9080899 PMID: 28820499.

68. Zhong W., Hu L., Zhao Y., Li Z., Zhuo Y., Jiang X., et al. Effects of dietary choline levels during pregnancy on reproductive performance, plasma metabolome and gut microbiota of sows. Front Vet Sci. 2022; 8: 771228. DOI: https://doi.org/10.3389/fvets.2021.771228 PMID: 35141305.

69. Coleman D.N., Alharthi A., Lopreiato V., Trevisi E., Miura M., Pan Y.X., et al. Choline supply during negative nutrient balance alters hepatic cystathionine β-synthase, intermediates of the methionine cycle and transsulfuration pathway, and liver function in Holstein cows. J Dairy Sci. 2019; 102 (9): 8319–31. DOI: https://doi.org/10.3168/jds.2019-16406 PMID: 31056334.

70. Steane S.E., Cuffe J.S.M., Moritz K.M. The role of maternal choline, folate and one-carbon metabolism in mediating the impact of prenatal alcohol exposure on placental and fetal development. J Physiol. 2023; 601 (6): 1061–75. DOI: https://doi.org/10.1113/JP283556 PMID: 36755527.

71. Baker J.A., Bodnar T.S., Breit K.R., Weinberg J., Thomas J.D. Choline supplementation alters hippocampal cytokine levels in adolescence and adulthood in an animal model of fetal alcohol spectrum disorders. Cells. 2023; 12 (4): 546. DOI: https://doi.org/10.3390/cells12040546 PMID: 36831213.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITORS
CHIEF EDITOR
Sukhikh Gennadii Tikhonovich
Academician of the Russian Academy of Medical Sciences, V.I. Kulakov Obstetrics, Gynecology and Perinatology National Medical Research Center of Ministry of Healthсаre of the Russian Federation, Moscow
CHIEF EDITOR
Kurtser Mark Arkadievich
Academician of the Russian Academy of Sciences, MD, Professor, Head of the Obstetrics and Gynecology Subdepartment of the Pediatric Department, N.I. Pirogov Russian National Scientific Research Medical University, Ministry of Health of the Russian Federation
CHIEF EDITOR
Radzinsky Viktor Evseevich
Corresponding Member of the Russian Academy of Sciences, MD, Professor, Head of the Subdepartment of Obstetrics and Gynecology with a Course of Perinatology of the Medical Department in the Russian People?s Friendship University

Journals of «GEOTAR-Media»