Oral probiotics: a dual action mechanism in correction of dysbiosis. What is known?
AbstractHuman health, its immunity, the presence of chronic diseases and dysbiotic processes of various loci (including the vagina) depend on the microorganisms inhabiting the body. The intestinal biocenosis is currently recognized as the most important component of homeostasis, since its violations are associated with a number of diseases: arterial hypertension, metabolic syndrome, rheumatoid joint diseases, non-inflammatory bowel diseases, malignant neoplasms and disorders of the vaginal biotope (bacterial vaginosis, nonspecific vaginitis, vulvovaginal candidiasis). The unity of dysbiotic processes with the dominance of disorders in a particular biotope emphasizes the need for an integrated approach that combines correction of microecological disorders simultaneously both in intestine and in vagina.
The end of the 20th and the beginning of the 21st century are distinguished by development of many drugs for supply of lactobacilli to an organism, especially female one. If we recall the beginning of this work from prescription of preparations containing 100,000 lactobacilli and compare with the billions of colony-forming units that we prescribe today, promise and variability of modern technologies in relation to modulating both number of microorganisms and their combinations, as well as their routes of administration, becomes obvious. This work is endless...
Employees of our department took part in post-registration studies of the oral probiotic Vagilac Proledi (Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14). Numerous clinical studies have shown its effectiveness in both pregnant and non-pregnant women, demonstrating a number of benefits of the study drug in the following situations: menstruation period, adolescence, combination with topical therapy, during the working day, in pregnancy complications associated with bloody vaginal discharges and in order to restore normal biocenosis of the vagina and gastrointestinal tract.
Keywords:intestinal and vaginal dysbiosis; oral probiotic; Vagilac Proledi
Funding. The study had no sponsor support.
Conflict of interest. The authors declare no conflict of interest.
For citation: Radzinsky V.E., Solovieva A.V., Kuznetsova O.A., Smirnova T.V. Oral probiotics: a dual action mechanism in correction of dysbiosis. What is known? Akusherstvo i ginekologiya: novosti, mneniya, obuchenie [Obstetrics and Gynecology: News, Opinions, Training]. 2023; 11. Supplement: 85–90. DOI: https://doi.org/10.33029/2303-9698-2023-11-suppl-85-90 (in Russian)
REFERENCES
1. McFall-Ngai M., et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013; 110: 3229–36. PMID: 23391737.
2. D’Argenio V. Human microbiome acquisition and bioinformatic challenges in metagenomic studies. Int J Mol Sci. 2018; 19: 383.
3. Obesity. Diabetes. Pregnancy. In: V.E. Radzinsky (ed.). Moscow: GEOTAR-Media, 2020: 528 p. (in Russian)
4. Thaiss C.A., Zmora N., Levy M., Elinav E. The microbiome and innate immunity. Nature. 2016; 535: 65–74.
5. Zhang M., Sun K., Wu Y. et al. Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front Immunol. 2017; 8: 942.
6. Valitutti F., Cucchiara S., Fasano A. Celiac disease and the microbiome. Nutrients. 2019. Vol. 11. P. 2403.
7. Maeda Y., Takeda K. Host-microbiota interactions in rheumatoid arthritis. Exp Mol Med. 2019; 51: 150.
8. Belizario J.E., Faintuch J., Garay-Malpartida M. Gut microbiome dysbiosis and immunometabolism: New frontiers for treatment of metabolic diseases. Mediators Inflamm. 2018; 2018: 2037838.
9. Main B.S., Minter M.R. Microbial immuno-communication in neurodegenerative diseases. Front Neurosci. 2017; 11: 151.
10. Gopalakrishnan V., Helmink B.A., Spencer C.N., Reuben A., Wargo J.A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018; 33: 570–580.
11. Solov’eva A.V., Chegus L.A. The specific features of vaginal and intestinal microbiota in women of North indigenous small-numbered peoples under the conditions of the urbanized North. Akusherstvo i ginekologiya [Obstetrics and Gynecology]. 2020; (11): 174–83. DOI: https://doi.org/10.18565/aig.2020.11.174-182 (in Russian)
12. Popkova S.M., Rakova E.B., Khramova E.E., et al. Microecological combinations of vaginal and intestinal biotopes in women with lower female reproductive tract inflammantory diseases and in adolescents girls with ovarian dysfunction. Byulleten’ SO RAMN [Bulletin of the Siberian Department of the Russian Academy of Medical Sciences]. 2013; 33 (4): 77–84. (in Russian)
13. Shikh E.V. Pharmacological and clinical aspects of oral preparations of lactobacilli usage in treatment of vaginal dysbiosis. Akusherstvo i ginekologiya: novosti, mneniya, obuchenie [Obstetrics and Gynecology: News, Opinions, Training]. 2021; 9 (2): 82–91. DOI: https://doi.org/10.33029/2303-9698-2021-9-2-82-91 (in Russian)
14. D’Argenio V. Human microbiome acquisition and bioinformatic challenges in metagenomic studies. Int J Mol Sci. 2018; 19: 383.
15. Selber-Hnatiw S., Rukundo B., Ahmadi M., Akoubi H., Al-Bizri H., Aliu A.F., et al. Human gut microbiota: Toward an ecology of disease. Front Microbiol. 2017; 8: 1265.
16. Kantarci A., Hasturk H. Microbes and host response: A relationship in health and disease. Oral Dis. 2017; 24: 1385–7. Hall A.B., Tolonen A.C., Xavier R.J. Human genetic variation and the gut microbiome in disease Nat Rev Genet. 2017; 8: 690–9.
17. Brusaferro A., Cavalli E., Farinelli E., Cozzali R., Principi N., Esposito S. Gut dysbiosis and paediatric Crohn’s disease. J Infect. 2019; 78 (1): 1–7.
18. Imhann F., Vich Vila A., Bonder M.J., Fu J., Gevers D., Visschedijk M.C., et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. 2018; 67: 108–19.
19. Yan Q., Gu Y., Li X., Yang W., Jia L., Chen C., et al. Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol. 2017; 7: 381. DOI: https://doi.org/10.3389/fcimb.2017.00381
20. Wen C., Zheng Z., Shao T., Liu L., Xie Z., Le Chatelier E., et al. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol. 2017; 18: 142.
21. D’Argenio V., Torino M., Precone V., Casaburi G., Esposito M.V., Iaffaldano L., et al. The Cause of Death of a child in the 18th century solved by bone microbiome typing using laser microdissection and next generation sequencing. Int J Mol Sci. 2017; 18: 109.
22. Iaffaldano L., Granata I., Pagliuca C., Esposito M.V., Casaburi G., Salerno G., et al. Oropharyngeal microbiome evaluation highlights Neisseria abundance in active celiac patients. Sci Rep. 2018; 8: 11047. Wang W.M., Jin H.Z. Skin microbiome: An actor in the pathogenesis of psoriasis. Chin Med J. 2018; 131: 95–8.
23. Nycz B.T., Dominguez S.R., Friedman D., Hilden J.M., Ir D., Robertson C.E., et al. Evaluation of bloodstream infections, Clostridium difficile infections, and gut microbiota in pediatric oncology patients. PLoS One. 2018; 13: e0191232.
24. Rinninella E., Mele M.C., Merendino N., Cintoni M., Anselmi G., Caporossi A., et al. The role of diet, micronutrients and the gut microbiota in age-related macular degeneration: New perspectives from the gut-retina axis. Nutrients. 2018; 10: 1677.
25. D’Ippolito S., Di Nicuolo F., Pontecorvi A., Gratta M., Scambia G., Di Simone N. Endometrial microbes and microbiome: Recent insights on the inflammatory and immune «players» of the human endometrium. Am J Reprod Immunol. 2018; 80: e13065.
26. Komiya S., Naito Y., Okada H., Matsuo Y., Hirota K., Takagi T., et al. Characterizing the gut microbiota in females with infertility and preliminary results of a water-soluble dietary fiber intervention study. J Clin Biochem Nutr. 2020; 67 (1): 105–11. DOI: https://doi.org/10.3164/jcbn.20-53
27. D’Argenio V. The high-throughput analyses era: Are we ready for the data struggle? High Throughput. 2018; 7: 8.
28. D’Argenio V. Human microbiome acquisition and bioinformatic challenges in metagenomic studies. Int J Mol Sci. 2018; 19: 383.
29. Nuriel-Ohayon M., Neuman H., Koren O. Microbial changes during pregnancy, birth, and infancy. Front Microbiol. 2016; 7: 1031.
30. Neu J. The microbiome during pregnancy and early postnatal life. Semin Fetal Neonatal Med. 2016; 21: 373–9.
31. Mor G., Aldo P., Alvero A.B. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol. 2017; 17: 469–82.
32. Rodríguez J.M., Murphy K., Stanton C., Ross R.P., Kober O.I., Juge N., et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 2015; 26: 26050.
33. Jiménez E., Marìn M.L., Martìn R., Odriozola J.M., Olivares M., Xaus J., et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008; 159: 187–93.
34. Stinson L.F., Payne M.S., Keelan J.A. Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit Rev Microbiol. 2017; 43: 352–69.
35. Koleva P.T., Kim J.S., Scott J.A., Kozyrskyj A.L. Microbial programming of health and disease starts during fetal life. Birth Defects Res C Embryo Today. 2015; 105: 265–77.
36. Nagpal R., Tsuji H., Takahashi T., Nomoto K., Kawashima K., Nagata S., et al. Gut dysbiosis following C-section instigates higher colonisation of toxigenic Clostridium perfringens in infants. Benef Microbes. 2017; 8: 353–65.
37 Escherich T. Die Darmbakterien des Säuglings und ihre Beziehungen zur Physiologie der Verdauung. Stuttgart, Germany, 1886: 1–180.
38. Perez-Muñoz M.E., Arrieta M.C., Ramer-Tait A.E., Walter J. A critical assessment of the «sterile womb» and «in utero colonization» hypotheses: Implications for research on the pioneer infant microbiome. Microbiome. 2017; 5: 48.
39. Tapiainen T., Paalanne N., Tejesvi M.V., Koivusaari P., Korpela K., Pokka T., et al. Maternal influence on the fetal microbiome in a population-based study of the first-pass meconium. Pediatr Res. 2018; 84 (3): 371–9.
40. Ardissone A.N., de la Cruz D.M., Davis-Richardson A.G., Rechcigl K.T., Li N., Drew J.C., et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014; 9: e90784.
41. Collado M.C., Rautava S., Aakko J., Isolauri E., Salminen S. Human gut colonization may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016; 6: 23129.
42. Tapiainen T., Paalanne N., Tejesvi M.V., Koivusaari P., Korpela K., Pokka T., et al. Maternal influence on the fetal microbiome in a population-based study of the first-pass meconium. Pediatr Res. 2018; 84 (3): 371–9.
43. Hodyl N.A., Aboustate N., Bianco-Miotto T., Roberts C.T., Clifton V.L., Stark M.J. Child neurodevelopmental outcomes following preterm and term birth: what can the placenta tell us? Placenta. 2017; 57: 79–86. DOI: https://doi.org/10.1016/j.placenta.2017.06.009
44. Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010; 107: 11 971–5.
45. Madan J.C., Salari R.C., Saxena D., Davidson L., O’Toole G.A., Moore J.H., et al. Gut microbial colonization in premature neonates predicts neonatal sepsis. Arch Dis Child Fetal Neonatal Ed. 2012; 97: F456–62.
46. Radzinsky V.E., Olina A.A., Orazov M.R., Khamoshina M.B., Solov’eva A.V., Penzhoyan G.A., et al. Women’s consultation: A guide. 4th ed., revised and additional. In: V.E. Radzinsky (ed.). Moscow, 2021: 576 p. (in Russian)
47. Hansen R., Scott K.P., Khan S., Martin J.C., Berry S.H., Stevenson M., et al. First-pass meconium samples from healthy term vaginally-delivered neonates: An analysis of the microbiota. PLoS One. 2015; 10: e0133320.
48. Vujic G. Efficacy of orally applied probiotic capsules for bacterial vaginosis and other vaginal infections: a double-blind, randomized, placebo-controlled study Goran. Eur J Obstet Gynecol Reprod Biol. 2013; 168 (1): 75–9. PMID: 23395559.
49. Cianci A., Giordano R., Delia A., et al. Efficacy of Lactobacillus Rhamnosus GR-1 and of Lactobacillus Reuteri RC-14 in the treatment and prevention of vaginoses and bacterial vaginitis relapses. Minerva Ginecol. 2008; 60 (5): 369–76.
50. Köhler G.A., Assefa S., Reid G. Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans. Infect Dis Obstet Gynecol. 2012; 2012: 636474. DOI: https://doi.org/10.1155/2012/63647(46)4
51. Novikova S.V., Logutova L.S., Ignat’eva M.A. Clinical evaluation of the efficacy and safety of the use of vagilac to treat bacterial vaginosis in pregnancy. Meditsinskiy sovet [Medical Council]. 2018; (13): 90–94. https://doi.org/10.21518/2079-701X-2018-13-90-94 (in Russian)