To the content
3. Приложение . 2019

Features of lipid profile of newborns born from pregnancies complicated by diabetes mellitus

Abstract

Aim - to assess the lipid profile of newborns born from pregnancies complicated by various types of diabetes mellitus.

Material and methods. We examined 100 pregnant women and their newborns, which are divided into 6 groups: I - type 1 diabetes (11 pair), II - type 2 diabetes (10 pair), III - insulin treated gestational diabetes mellitus (GDM) (34 pair), IV - diet controlled GDM (28 pair), V - obesity (7 pair), VI - control (10 pair). We compared the parameters of lipid profile of pregnant women and their newborns I-VI groups.

Results. Physiological hypercholesterolemia was detected in pregnant women of I-VI groups. Triglycerides were highest in groups I and III. The lowest C-peptide was found in group I. High triglycerides and HbA1c in the third trimester contributed to diabetic fetopathy. Hypoglycemia was detected in groups I and II, and its severity depended on HbA1c in the III trimester. Reduction of triglycerides and atherogenicity index was found in groups I—IV, increase in HDL - in groups III and IV. HDL was higher in newborns with diabetic fetopathy (n=44) than without it (n=56).

Conclusion. Hypercholesterolemia and hypertriglyceridemia in newborns should not be considered a positive effect of diabetes, as they reflect the action of adaptive mechanisms in the child. In the future, the lipid spectrum in children born to mothers with diabetes can change dramatically.

Keywords:gestational diabetes mellitus, macrosomia, plasma lipid

For citation: Papysheva O.V., Mayatskaya T.A. Features of lipid profile of newborns born from pregnancies complicated by diabetes mellitus. Akusherstvo i ginekologiya: novosti, mneniya, obuchenie [Obstetrics and Gynecology: News, Opinions, Training]. 2019; 7 (3). Supplement: 41-8. doi: 10.24411/2303-9698-2019-13905 (in Russian)

References

1. McIlvride S., Dixon P.H., Williamson C. Bile acids and gestation. Mol Aspects Med. 2017; 56: 90-100. doi: 10.1016/j.mam.2017.05.003.

2. Bassily E., Bell C., Verma S., Patel N., et al. Significance of obstetrical history with future cardiovascular disease risk. Am J Med. 2018 Dec 11. pii: S0002-9343(18)31156-2. doi: 10.1016/j.amjmed.2018.11.029.

3. Nasioudis D., Doulaveris G., Kanninen T.T. Dyslipidemia in pregnancy and maternal-fetal outcome. Minerva Ginecol. 2018 Oct 11. doi: 10.23736/S0026-4784.18.04330-7.

4. Miranda J., Simoes R.V., Paules C., Canueto D., et al. Metabolic profiling and targeted lipidomics reveals a disturbed lipid profile in mothers and fetuses with intrauterine growth restriction. Sci Rep. 2018; 8 (1): 13614. doi: 10.1038/s41598-018-31832-5.

5. Contreras-Duarte S., Carvajal L., Fuenzalida B., Cantin C., et al. Maternal dyslipidaemia in pregnancy with gestational diabetes mellitus: possible impact on foetoplacental vascular function and lipoproteins in the neonatal circulation. Curr Vasc Pharmacol. 2019; 17 (1): 52-71. doi: 10.2174/1570161115666171116154247.

6. Ghodke B., Pusukuru R., Mehta V. Association of lipid profile in pregnancy with preeclampsia, gestational diabetes mellitus, and preterm delivery. Cureus. 2017; 9 (7): e1420. doi: 10.7759/cureus.1420.

7. Wang X., Guan Q., Zhao J., Yang F., et al. Association of maternal serum lipids at late gestation with the risk of neonatal macrosomia in women without diabetes mellitus. Lipids Health Dis. 2018; 17 (1): 78. doi: 10.1186/s12944-018-0707-7.

8. Akhmetova E.S., Lareva N.V., Mudrov V.A., et al. Features of pregnancy with gestational diabetes mellitus and prediction of diabetic fetopathy. Zhurnal akusherstva i zhenskikh bolezney [Journal of Obstetrics and Women's Diseases]. 2017; 66 (4): 14-24 (in Russian)

9. Korkmazer E., Solak N. Correlation between inflammatory markers and insulin resistance in pregnancy. J Obstet Gynaecol. 2015; 35 (2): 142-5. doi: 10.3109/01443615.2014.948408.

10. Mikhalev E.V., Shanina O.M., Saprina T.V. Hemostasis regulation and metabolic (hormonal, electrolyte) disturbances in term newborns from women with gestational diabetes. Sakharniy diabet [Diabetes Mellitus]. 2015; (1): 78-86. (in Russian)

11. Bellatore A., Scherzinger A., Stamm E., Martinez M., et al. Fetal ovemutrition and adolescent hepatic fat fraction: the exploring perinatal outcomes in children study. J Pediatr. 2017 Oct 15. pii: S0022-3476(l7)31169-1. doi: 10.1016/j.jpeds.2017.09.008.

12. Collins K., Oehmen R., Mehta S. Effect of obesity on neonatal hy-poglycaemia in mothers with gestational diabetes: a comparative study. Aust N Z J Obstet Gynaecol. 2017; 13. doi: 10.1111/ajo.12717.

13. Li S., Zhu Y., Yeung E., Chavarro J.E., et al. Offspring risk of obesity in childhood, adolescence and adulthood in relation to gestational diabetes mellitus: a sex-specific association. Int J Epidemiol. 2017; 46 (5): 1533-41. doi: 10.1093/ije/dyx151.

14. Lu Y.P., Reichetzeder C., Prehn C., von Websky K., et al. Fetal serum metabolites are independently associated with gestational diabetes mellitus. Cell Physiol Biochem. 2018; 45 (2): 625-38. doi: 10.1159/000487119.

15. Santos A.P., Couto R.D. Lipoprotein profile modifications during gestation: a current approach to cardiovascular risk surrogate markers and maternal-fetal unit complications. Rev Bras Ginecol Obstet. 2018; 40 (5): 281-6. doi: 10.1055/s-0038-1642600.

16. Zheng W., Huang W., Zhang L., Tian Z., et al. Changes in serum lipid levels during pregnancy and association with neonatal outcomes: a large cohort study. Reprod Sci. 2018; 25 (9): 1406-12. doi: 10.1177/1933719117746785.

17. Szabo A.J. Transferred maternal fatty acids stimulate fetal adipo-genesis and lead to neonatal and adult obesity. Med Hypotheses. 2019; 122: 82-8. doi: 10.1016/j.mehy.2018.10.022.

18. Pazhohan A., Rezaee Moradali M., Pazhohan N. Association of first-trimester maternal lipid profiles and triglyceride-glucose index with the risk of gestational diabetes mellitus and large for gestational age newborn. J Matern Fetal Neonatal Med. 2019; 32 (7): 1167-75. doi: 10.1080/14767058.2017.1402876.

19. Al Zahrani A.M., Al Shaikh A. Glycemic control in children and youth with type 1 diabetes mellitus in Saudi Arabia. Clin Med Insights Endocrinol Diabetes. 2019; 12: 1179551418825159. doi: 10.1177/1179551418825159.

20. Toresson Grip E., Svensson A.M., Miftaraj M., Eliasson B., et al. Real-world costs of continuous insulin pump therapy and multiple daily injections for type 1 diabetes: a population-based and propensity-matched cohort from the Swedish National Diabetes Register. Diabetes Care. 2019 Jan 31. pii: dc181850. doi: 10.2337/dc18-1850.

21. Reichelt A.J., Weinert L.S., Mastella L.S., Gnielka V., et al. Clinical characteristics of women with gestational diabetes - comparison of two cohorts enrolled 20 ears apart in southern Brazil. Sao Paulo Med J. 2017; 135 (4): 376-82. doi: 10.1590/1516-3180.2016.0332190317.

22. Moen G.H., Sommer C., Prasad R.B., Sletner L., et al. Mechanisms in endocrinology: epigenetic modifications and gestational diabetes: a systematic review of published literature. Eur J Endocrinol. 2017; 176 (5): R247-67. doi: 10.1530/EJE-16-1017.

23. Geraghty A.A., Alberdi G., O'Sullivan E.J., O'Brien E.C., et al. Maternal and fetal blood lipid concentrations during pregnancy differ by maternal body mass index: findings from the ROLO study. BMC Pregnancy Childb. 2017; 17 (1): 360. doi: 10.1186/s12884-017-1543-x.

24. Lindsay K.L., Brennan L., Rath A., Maguire O.C., et al. Gestational weight gain in obese pregnancy: impact on maternal and foetal metabolic parameters and birthweight. J Obstet Gynaecol. 2018; 38 (1): 60-5. doi: 10.1080/01443615.2017.1328670.

25. Perichart-Perera O., Munoz-Manrique C., Reyes-Lopez A., Tolen-tino-Dolores M., et al. Metabolic markers during pregnancy and their association with maternal and newborn weight status. PLoS One. 2017; 12 (7): e0180874. doi: 10.1371/journal.pone.0180874.

26. Kadakia R., Nodzenski M., Talbot O., Kuang A., et al.; HAPO Study Cooperative Research Group. Maternal metabolites during pregnancy are associated with newborn outcomes and hyperinsulinaemia across ancestries. Diabetologia. 2019; 62 (3): 473-84. doi: 10.1007/s00125-018-4781-1.

27. Prados M., Flores-Le Roux J.A., Benaiges D., Llaurado G., et al. Previous gestational diabetes increases atherogenic dyslipidemia in subsequent pregnancy and postpartum. Lipids. 2018; 53 (4): 387-92. doi: 10.1002/lipd.12040.

28. Aksenov A.N., Bocharova I.I., Bashakin N.F., Troitskaya M.V., et al. Specific features of early postnatal adaptation and management of neonates born to mothers with gestational diabetes mellitus. Rossiyskiy vestnik akushera-ginecologa [Russian Bulletin of Obstetrician-Gynecologist]. 2015; (4): 75-80. (in Russian)

29. Nikitina I.L., Konoplya I.S., Polyanskaya A.A., Liskina A.S., et al. Characterization of psychological and physical development in children of gestation diabetes pregnancies. Meditsinskiy sovet [Medical Council]. 2017; (9): 14-20. (in Russian)

30. Kulshrestha V., Agarwal N. Third Trimester foetal complications in pregnancy with diabetes. J Pak Med Assoc. 2016; 66 (9 Suppl 1): S81-4.

31. Kominiarek M.A., Saade G., Mele L., Bailit J., et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Maternal-Fetal Medicine Units (MFMU). Network association between gestational weight gain and perinatal outcomes. Obstet Gynecol. 2018 Sep 7. doi: 10.1097/AOG.0000000000002854.

32. Soliman A., Salama H., Al Rifai H., De Sanctis V., et al. The effect of different forms of dysglycemia during pregnancy on maternal and fetal outcomes in treated women and comparison with large cohort studies. Acta Biomed. 2018; 89 (S5): 11-21. doi: 10.23750/abm.v89iS4.7356.

33. Basri N.I., Mahdy Z.A., Ahmad S., Abdul Karim A.K., et al. The World Health Organization (WHO) versus The International Association of Diabetes and Pregnancy Study Group (IADPSG) diagnostic criteria of gestational diabetes mellitus (GDM) and their associated maternal and neonatal outcomes. Horm Mol Biol Clin Investig. 2018; 34 (1).

34. Djelmis J., Ivanisevic M., Desoye G., van Poppel M., et al. Higher cord blood levels of fatty acids in pregnant women with type 1 diabetes mellitus. J Clin Endocrinol Metab. 2018; 103 (7): 2620-9. doi: 10.1210/jc.2018-00272.

35. Schaefer-Graf U.M., Graf K., Kulbacka I., Kjos S.L., et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care. 2008; 31 (9): 185863. doi: 10.2337/dc08-0039.

36. Jovandaric M.Z., Ivanovski P.I. Free fatty acids of newborns from women with gestational diabetes mellitus. Fetal Pediatr Pathol. 2017; 36 (3): 190-4. doi: 10.1080/15513815.2017.1281365.

37. Christensen J.J., Retterstol K., Godang K., Roland M.C., et al. LDL cholesterol in early pregnancy and offspring cardiovascular disease risk factors. J Clin Lipidol. 2016; 10 (6): 1369-78.e7. doi: 10.1016/j.jacl.2016.08.016.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITORS
CHIEF EDITOR
Sukhikh Gennadii Tikhonovich
Academician of the Russian Academy of Medical Sciences, V.I. Kulakov Obstetrics, Gynecology and Perinatology National Medical Research Center of Ministry of Healthсаre of the Russian Federation, Moscow
CHIEF EDITOR
Kurtser Mark Arkadievich
Academician of the Russian Academy of Sciences, MD, Professor, Head of the Obstetrics and Gynecology Subdepartment of the Pediatric Department, N.I. Pirogov Russian National Scientific Research Medical University, Ministry of Health of the Russian Federation
CHIEF EDITOR
Radzinsky Viktor Evseevich
Corresponding Member of the Russian Academy of Sciences, MD, Professor, Head of the Subdepartment of Obstetrics and Gynecology with a Course of Perinatology of the Medical Department in the Russian People?s Friendship University

Journals of «GEOTAR-Media»